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Similarity Searching using Compound Class-Specific Combinations of
Substructures Found in Randomly Generated Molecular Fragment
Populations
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Substructure- or fragment-type descriptors have long been
widely used and effective tools for chemical similarity search-
ing[1,2] and other applications in chemoinformatics and com-
puter-aided drug discovery.[2–4] Currently available substruc-
ture-type descriptors are generally well designed and based on
chemical knowledge, predefined molecular organization
schemes,[5,6] or retrosynthetic criteria.[7, 8] Popular sets of frag-
ment descriptors include MACCS structural keys (166 publicly
available fragments)[9,10] or the BCI standard dictionary
(1052 fragments).[11,12] Early substructure generation methods
systematically derived molecular fragments[13] or grew frag-
ments along evolutionary trees.[14] Such procedures generated
series of fragments whose presence depended on each
other.[15] Given the large numbers of systematically derived
fragments, statistical analyses were employed to identify fre-
quencies of fragment occurrence and weight fragments ac-
cordingly in database searching[16] or generate sets of equifre-
quently occurring fragments.[17] For similarity searching, frag-
ment-type descriptors are typically encoded as molecular fin-
gerprints where each bit position accounts for the presence or
absence of a particular fragment.[1,2]

Herein, we depart from systematic or knowledge-based sub-
structure design and, by contrast, mine randomly generated
fragment populations for substructures that are associated
with different compound classes. In this study, we demonstrate
that activity class-specific combinations of random substruc-
tures can be systematically identified and used as fingerprints
for similarity searching. These findings open up new avenues
for the generation of structural descriptors and compound
class-directed fingerprints.
The conceptual basis for our substructure analysis is provid-

ed by previous studies where we have shown that random
fragment populations generated with MolBlaster[18] can be
used to detect molecular similarity relationships. MolBlaster
randomly deletes rows in connectivity tables of test molecules
and samples the resulting fragments. Compounds having simi-
lar activity have been identified by comparing their fragment
populations using information-theoretic metrics.[18,19] A major
conclusion from these studies has been that random fragment
populations must contain specific molecular information. What

exactly is this information? This question has been addressed
by organizing fragment populations as tree structures that
capture conditional probabilities of fragment occurrence.[20]

The approach is described in Figure 1. For the purpose of our
analysis, Activity Class-Characteristic Fragments (ACCS) are de-
fined as fragments that are produced by at least two active
molecules within a reference set but no compounds of a back-
ground database. Fragment trees are found to contain path-
ways with ACCS combinations that are specific for different
compound activity classes.[20]

We now ask two fundamental questions: First, can combina-
tions of random fragments be used as substructure descriptors
for different activity classes? Second, are such molecular repre-
sentations capable of detecting diverse structure–activity rela-
tionships? It is intuitive that active compounds should contain
structural patterns that distinguish them from inactive ones.
However, key issues of our analysis are whether random frag-
ment populations contain this information and, in addition,
whether predictive patterns can be isolated from them.
To address these questions, we have analyzed five high-

throughput screening data sets available in PubChem.[21] These
data sets include three screens for cathepsin B, L, and S, cys-
teine protease inhibitors, a screen for JNK3 tyrosine kinase in-
hibitors, and another one for protein kinase A inhibitors. A
summary is provided in Table 1. We have chosen experimental
screening data sets because they consist not only of confirmed
active but also confirmed inactive compounds and contain the
type of hits one searches for in practical in silico screening ap-
plications. Furthermore, hits in screening data sets are often
structurally diverse and thus provide challenging test cases for
the analysis of structure–activity relationships. The structural
diversity of active compounds in all five screening sets is re-
flected by low average pairwise Tanimoto similarity reported in
Table 1 and can be further appreciated in Supporting Informa-
tion Figure 1 that shows representative examples of hits.
Considering the total number of hits available in each

screening set, ten subsets of 11–16 active molecules were ran-
domly taken from each set as reference molecules (Table 1).
Each reference set was fragmented together with 500 random-
ly selected ZINC compounds[22] using 3000 MolBlaster itera-
tions with randomized numbers of deletions per step, as de-
scribed previously.[19] For each reference set, the resulting frag-
ment populations were used to determine cumulative num-
bers of ACCS for the top three levels (0, 1, 2) of their fragment
trees. In Table 2, we report average numbers of ACCS for all
reference sets. Independent of their biological activity, active
reference molecules from each screening set consistently pro-
duced ACCS. At tree level 0, the average number of character-
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Figure 1. Identification of activity-class specific fragment pathways. The general procedure is outlined in the flow chart on the right. On the left, an example
is shown; three molecules (A, B, and C), two of which (A and B) share the same activity. At the top, randomly generated fragment populations of these mole-
cules are displayed within a reference system accounting for relative frequencies of fragment occurrence. From this representation, a tree structure is calculat-
ed that captures conditional probabilities of fragment co-occurrence. In tree structures, fragments are organized at different levels. Level 0 represents the
begin of pathways, level 1 defines direct dependence on root fragments, level 2 second order dependence, and so on. Tree levels reflect different degrees of
fragment generality (that is, fragments become increasingly characteristic for individual molecules). An exemplary fragment pathway leading to molecules A
and B is highlighted in the fragment population graph and the corresponding tree structure. The first two fragments within this path (shown below the tree)
also occur in the random fragment population of the inactive molecule C. By contrast, the other two fragments are only found in the fragment populations
of molecules A and B and thus meet our criteria for activity class-characteristic fragments (ACCS). Thus, the section of this pathway that consists of ACCS is ac-
tivity-class specific. Random fragments only found in active molecules are called class-characteristic because they often do not occur in all compounds within
a class and might also be produced by a database compound as background databases grow in size. By contrast, hierarchical combinations of ACCS in frag-
ment trees are unique features of activity classes. Therefore, fragments taken from activity class-specific pathways are considered class signatures.
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istic substructures ranged from
9.7 (CAB) to 36.5 (PKA). With
the exception of PKA, cumula-
tive numbers of ACCS at tree
level 2 were always smaller than
100. Figure 2 shows representa-
tive ACCS examples for CAB. As
can be seen, these substruc-
tures are diverse and relatively
small. Depending on the tree
level, larger substructures are
also found.
To investigate whether these

substructures could be directly
used to detect structure–activity
relationships, we encoded ACCS
for each reference set and tree
level as keyed fingerprints,
where each bit position detects
the presence or absence of a
specific fragment. These small
compound class-directed ACCS
fingerprints (ACCS-FPs) were
then used to search each
screening data set for the re-
maining active molecules (that
is, total number of hits minus
reference compounds). In these
calculations, we applied nearest
neighbor methods as a similarity
search strategy for multiple ref-
erence compounds.[23] . These
methods separately calculate
the similarity of a database com-
pound to each individual refer-
ence molecule.[23] Then either
the largest similarity value is
used, which is called the 1-NN
strategy, or the similarity scores
of k nearest neighbors are aver-
aged (k-NN).[23] For all reference
sets, 1-NN and 3-NN calculations
were carried out on the basis of
Tanimoto similarity[1] with ACCS-
FPs, MACCS keys (166 bits), and
three other fingerprints; TGD[24]

(420 bits), TGT[25] (1704 bits), and
Molprint2D.[26] TGD is an atom
pair-type fingerprint recording
pairs of seven different atom
types over a maximum path
length of 15 bonds. TGT is a
three-point pharmacophore-
type 2D fingerprint that cap-
tures triangles of four atomic
features using graph distances
divided into six distance ranges.

Table 1. Screening data sets.[a]

Code Inhibitors Nactives Nscaffolds Activity range Avg. Tc Nref Ninactives

CAB Cathepsin B 36 26 46 nm–44 mm 0.45 12 63287
CAL Cathepsin L 49 39 3 nm–36 mm 0.43 16 57764
CAS Cathepsin S 34 28 4 nm–33 mm 0.54 12 61723
JNK JNK3 33 22 1 nm–15 mm 0.37 11 8420
PKA PKA 94 62 682 nm–357 mm 0.45 16 64797

[a] A summary of the screening data used in our analysis is provided. Nactives is the number of hits per data set
and Nscaffolds the number of unique scaffolds that represent these hits. Activity range reports the IC50 value
range for the hits. Ninactives gives the number of inactive screening set compounds and Nref the number of active
reference molecules used in similarity search calculations. The average Tanimoto coefficient (Avg. Tc) for pair-
wise comparison of hits is calculated using MACCS keys and reflects the structural heterogeneity of active com-
pounds. Tc is defined as Nab/(Na+Nb �Nab) where Na is the number of bits set on in the fingerprint of mole-
cule a, Nb the number of bits set on in b, and Nab the number of bits common to both molecules. All screen-
ing sets are publicly available in PubChem-Bioassays under the following AIDs: CAB, 453; CAL, 460; CAS, 501;
JNK, 530; PKA, 524.

Table 2. ACCS and average hit rates.[a]

Activity class Method Tree level ACCS Top 5 Top 10 Top 50 Top 100

CAB 1-NN 0 9.7 0.74 0.51 0.10 0.05
�1 33.9 0.89 0.60 0.12 0.06
�2 49.1 0.89 0.60 0.12 0.06

3-NN 0 0.58 0.36 0.08 0.04
�1 0.69 0.40 0.10 0.05
�2 0.69 0.40 0.09 0.05

CAL 1-NN 0 25.7 0.94 0.60 0.13 0.07
�1 69.3 0.96 0.68 0.15 0.07
�2 93.9 0.96 0.68 0.14 0.07

3-NN 0 0.24 0.17 0.06 0.03
�1 0.22 0.16 0.06 0.04
�2 0.26 0.16 0.07 0.04

CAS 1-NN 0 21.2 0.94 0.86 0.19 0.10
�1 50.1 0.94 0.79 0.17 0.09
�2 82.5 0.94 0.73 0.16 0.08

3-NN 0 0.84 0.72 0.19 0.11
�1 0.80 0.69 0.19 0.11
�2 0.78 0.67 0.19 0.10

JNK 1-NN 0 25.6 0.84 0.68 0.15 0.08
�1 47.9 0.78 0.55 0.12 0.06
�2 59.6 0.71 0.49 0.11 0.06

3-NN 0 0.38 0.22 0.09 0.05
�1 0.36 0.23 0.09 0.05
�2 0.31 0.22 0.08 0.05

PKA 1-NN 0 36.5 1.00 1.00 0.52 0.26
�1 99.4 1.00 1.00 0.42 0.21
�2 156.5 1.00 0.96 0.40 0.20

3-NN 0 0.52 0.41 0.11 0.08
�1 0.40 0.29 0.10 0.10
�2 0.34 0.23 0.11 0.11

[a] For each screening data set, average numbers of ACCS in reference sets are reported at different tree levels.
Also reported are average hit rates for similarity searching using ACCS fingerprints. For each of ten reference
sets, independent search calculations were carried out. Hit rates were calculated for the top-ranked 5, 10, 50,
and 100 screening set molecules on the basis of Tanimoto similarity.
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Molprint2D generates layered atom environments and varying
numbers of strings per molecule.
Table 2 reports average hit rates for ACCS-FPs for the first

three tree levels and the different screening data sets. ACCS-
FPs consistently retrieved active molecules and displayed a
strong tendency to enrich hits in small selection sets of 5 or
10 compounds. The majority of selection sets of 50 com-
pounds also contained 10%–20% active molecules. A graphical
representation of search performance is provided in Figure 3,
which shows hit rate maps for CAB as an example. These
graphs monitor hit rates over all tree levels and reveal that
ACCS-FPs containing fragments of the first few tree levels al-
ready displayed top search performance. Corresponding hit
rate maps for the remaining screening data sets are shown in
Supporting Information Figure 2. 1-NN calculations performed
overall better than 3-NN, although differences were subtle in a
number of cases. Even the smallest ACCS-FPs consisting only
of substructures identified at tree level 0 produced hit rates
comparable to those of larger versions of ACCS-FPs. Their
search performance was not dominated by large fragments. At
tree level 0, removal of fragments larger than 50% of the aver-
age size (number of atoms) of reference molecules typically re-
duced ACCS sets by less than 10% and did not notably
change search performance. These observations emphasize the
importance of ACCS combinations, rather than individual frag-
ments.

ACCS at tree level 0 represent starting points of class-specific
fragment pathways and thus occur independently of each
other. The observation that the addition of dependent frag-
ments at tree levels 1 and 2 did not increase search perfor-
mance, indicates that combinations of ACCS at origins of frag-
ment pathways capture much class-specific information, al-
though they are typically small. Moreover, the addition of de-
pendent fragments at increasing tree levels can produce sub-
structure combinations that are not represented by individual
reference molecules. The use of such combinations is likely to
increase the probability of detecting other database com-
pounds. For example, Figure 3 shows that hit rates for CAB de-
creased when substructures up to tree level 10 were added.
Therefore, it is not required to consider all ACCS produced by
a reference set. Rather, combinations of small subsets of ACCS
from different class-specific pathways encode sufficient infor-
mation.
Table 3 reports the results of corresponding similarity search

calculations using four different fingerprints. For selection sets
of up to 50 compounds, ACCS-FPs recovered on average more
hits than MACCS and for sets of 100 compounds, search per-
formance was overall comparable. Thus, variably composed
small ACCS-FPs consisting of class-directed random fragments
met or exceeded hit rates produced by MACCS that is based
on a generally applicable and well-defined fragment dictionary.
For small selection sets, ACCS-FPs also produced consistently

Figure 2. Representative ACCS. For activity class CAB, an exemplary ACCS
subset is shown. These substructures occur in fragment populations of a
CAB reference set that includes the three compounds shown at the top.
ACCS are classified according to their levels in fragment trees.

Figure 3. Hit rate map for activity class CAB. Average hit rates are reported
for the 1-NN (top) and 3-NN (bottom) search strategies for substructure
combinations at different tree levels. Hit rates are color-coded using a con-
tinuous spectrum from black (hit rate 1.0, that is, 100%) to white (hit rate
0.0).
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higher hit rates than the TGD
and TGT fingerprints. Compared
to Molprint2D, ACCS-FPs per-
formed notably better using the
1-NN search strategy. For 3-NN
calculations, hit rates obtained
with Molprint2D were a few
percent higher in four of five
cases. Our primary objective has
been to investigate whether
random fragment sets could be
successfully used for similarity
searching, which we have been
able to demonstrate. However,
the results in Table 2 and
Table 3 show that ACCS-FP
search performance compared
favorably to other 2D finger-
prints. At tree level 0, ACCS-FPs
contain on average about 24
substructures and are thus even
smaller in size than so-called
mini-fingerprints (MFPs) that
were introduced several years
ago as hybrid fingerprints con-
sisting of selected MACCS keys
and property descriptors.[27]

MFPs have a minimum number
of about 60 bit positions and
have thus far been the smallest
2D fingerprints.
We also determined unique

scaffolds[5] for active com-
pounds in screening data sets
(Table 1) and hits identified by
similarity searching. Table 4 re-
ports the number of unique
scaffolds identified in each simi-
larity search trial. Table 1 shows
that the ratio of hits and unique
scaffolds ranges from 1.2 to 1.5
for the five screening sets,
which further illustrates the di-
versity of active compounds
studied here. Table 4 reveals
that ACCS-FP calculations dis-
played a clear tendency to
detect diverse scaffolds. Fur-
thermore, comparison with re-
sults of reference calculations
also reported in Table 4 shows
that ACCS-FPs recognized in
most cases at least as many dis-
tinct scaffolds as the other fin-
gerprints, and often more.
ACCS-FPs detected more scaf-
folds than Molprint2D in 1-NN

Table 3. Average hit rates for reference calculations.[a]

Fingerprint Activity class Method Top 5 Top 10 Top 50 Top 100

MACCS

CAB 1-NN 0.42 0.36 0.13 0.07
3-NN 0.52 0.39 0.11 0.05

CAL 1-NN 0.22 0.19 0.08 0.04
3-NN 0.08 0.05 0.02 0.01

CAS 1-NN 0.36 0.37 0.17 0.10
3-NN 0.54 0.52 0.19 0.10

JNK 1-NN 0.48 0.41 0.12 0.07
3-NN 0.50 0.36 0.11 0.07

PKA 1-NN 0.08 0.13 0.08 0.05
3-NN 0.12 0.12 0.05 0.04

TGD

CAB 1-NN 0.44 0.33 0.11 0.06
3-NN 0.52 0.32 0.09 0.05

CAL 1-NN 0.20 0.16 0.07 0.04
3-NN 0.18 0.13 0.06 0.04

CAS 1-NN 0.14 0.13 0.07 0.04
3-NN 0.34 0.22 0.07 0.05

JNK 1-NN 0.36 0.21 0.07 0.04
3-NN 0.36 0.19 0.05 0.04

PKA 1-NN 0.24 0.21 0.09 0.05
3-NN 0.28 0.19 0.08 0.05

TGT

CAB 1-NN 0.68 0.38 0.08 0.04
3-NN 0.66 0.37 0.08 0.04

CAL 1-NN 0.30 0.18 0.06 0.03
3-NN 0.30 0.17 0.06 0.03

CAS 1-NN 0.32 0.24 0.08 0.05
3-NN 0.38 0.28 0.08 0.04

JNK 1-NN 0.56 0.35 0.08 0.04
3-NN 0.56 0.36 0.08 0.04

PKA 1-NN 0.08 0.16 0.05 0.03
3-NN 0.10 0.11 0.04 0.02

Molprint2D

CAB 1-NN 0.50 0.47 0.14 0.08
3-NN 0.76 0.46 0.13 0.07

CAL 1-NN 0.34 0.30 0.09 0.06
3-NN 0.30 0.20 0.09 0.05

CAS 1-NN 0.44 0.49 0.21 0.11
3-NN 0.74 0.57 0.20 0.11

JNK 1-NN 0.30 0.28 0.17 0.10
3-NN 0.34 0.24 0.16 0.10

PKA 1-NN 0.38 0.29 0.18 0.15
3-NN 0.48 0.40 0.25 0.18

[a] Reported are average hit rates for reference calculations using MACCS keys, TGD, TGT, and Molprint2D fin-
gerprints, presented according to Table 2.
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calculations but this trend was
reversed for 3-NN searching,
which parallels differences in hit
rates, as discussed above. Taken
together, the results show that
class-specific combinations of
random fragments encoded in
ACCS-FPs have the potential to
recognize structurally diverse
compounds.
In summary, we have been

able to demonstrate that specif-
ic combinations of substructures
can be extracted from random
fragment populations and suc-
cessfully used for similarity
searching. These findings extend
currently available approaches
to the design of structure-based
descriptors and similarity search
tools. ACCS-FPs are introduced
as prototypic fingerprint repre-
sentations of substructure com-
binations derived from com-
pound class-specific fragment
pathways. Combinations of only
approximately 20 ACCS success-
fully detect different structure–
activity relationships. In addition
to their small size, characteristic
features of ACCS-FPs include
that they are compound class-
directed and highly variable in
composition. Thus, we conclude
that random fragment popula-
tions are a valuable source for
the identification of substruc-
ture combinations that are sig-
natures of different compound
classes. Such substructure com-
binations provide a basis for the
development of class-specific
2D similarity search tools.

Keywords: chemoinformatics ·
fingerprints · random fragment
populations · similarity
searching · structural descriptors
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Table 4. (Continued)

Fingerprint Activity class Method Tree level Top 5 Top 10 Top 50 Top 100

TGD

CAB 1-NN N.A. 2.0 (2.2) 2.1 (3.3) 3.1 (5.3) 3.1 (5.5)
3-NN 2.1 (2.6) 2.1 (3.2) 2.7 (4.6) 3.0 (5.1)

CAL 1-NN 0.7 (1.0) 1.0 (1.6) 2.7 (3.3) 3.5 (4.1)
3-NN 0.7 (0.9) 0.8 (1.3) 2.2 (2.8) 3.6 (4.2)

CAS 1-NN 0.6 (0.7) 0.9 (1.3) 2.7 (3.7) 3.0 (4.2)
3-NN 1.1 (1.7) 1.6 (2.2) 2.4 (3.6) 3.4 (4.7)

JNK 1-NN 1.8 (1.8) 2.1 (2.1) 3.1 (3.7) 3.4 (4.2)
3-NN 1.7 (1.8) 1.8 (1.9) 2.4 (2.5) 3.0 (3.5)

PKA 1-NN 1.2 (1.2) 2.1 (2.1) 3.8 (4.3) 4.5 (5.2)
3-NN 1.4 (1.4) 1.9 (1.9) 3.3 (3.8) 4.1 (4.7)

TGT

CAB 1-NN N.A. 2.2 (3.4) 2.2 (3.8) 2.2 (3.8) 2.3 (3.9)
3-NN 2.2 (3.3) 2.2 (3.7) 2.2 (3.8) 2.2 (3.8)

CAL 1-NN 0.9 (1.5) 1.2 (1.8) 2.5 (3.1) 2.9 (3.5)
3-NN 0.9 (1.5) 1.1 (1.7) 2.3 (2.9) 2.5 (3.1)

CAS 1-NN 1.1 (1.6) 1.4 (2.4) 2.9 (4.2) 3.5 (4.9)
3-NN 1.2 (1.9) 1.5 (2.8) 2.5 (3.9) 3.0 (4.4)

JNK 1-NN 2.6 (2.8) 2.7 (3.5) 2.8 (4.1) 2.8 (4.2)
3-NN 2.6 (2.8) 2.7 (3.6) 2.8 (4.0) 2.8 (4.0)

PKA 1-NN 0.4 (0.4) 1.6 (1.6) 2.4 (2.4) 3.0 (3.0)
3-NN 0.5 (0.5) 1.1 (1.1) 2.1 (2.1) 2.2 (2.2)

Molprint2D

CAB 1-NN N.A. 1.9 (2.5) 2.3 (4.7) 4.0 (7.1) 4.7 (8.2)
3-NN 1.5 (3.8) 1.7 (4.6) 3.1 (6.4) 3.3 (6.6)

CAL 1-NN 1.3 (1.7) 2.4 (3.0) 3.8 (4.4) 5.5 (6.1)
3-NN 1.3 (1.5) 1.8 (2.0) 4.1 (4.7) 4.5 (5.3)

CAS 1-NN 2.1 (2.2) 3.8 (4.9) 8.3 (10.3) 8.8 (11.1)
3-NN 2.8 (3.7) 4.5 (5.7) 7.8 (9.9) 8.4 (10.7)

JNK 1-NN 1.5 (1.5) 2.7 (2.8) 5.0 (8.4) 5.6 (9.6)
3-NN 1.4 (1.7) 1.9 (2.4) 4.6 (8.0) 5.8 (9.7)

PKA 1-NN 1.9 (1.9) 2.9 (2.9) 7.1 (9.1) 10.6 (15.5)
3-NN 2.4 (2.4) 3.6 (4.0) 9.1 (12.5) 12.5 (18.3)

[a] For all similarity search trials according to Tables 2 and 3, the average number of distinct scaffolds represent-
ing the hits is reported. For each selection set, the average number of correctly identified hits is given in paren-
theses. Tree levels only apply to ACCS-FP calculations.
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